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Abstract

Molecule-text modeling, which aims to facili-
tate molecule-relevant tasks with a textual in-
terface and textual knowledge, is an emerging
research direction. Beyond single molecules,
studying reaction-text modeling holds promise
for helping the synthesis of new materials and
drugs. However, previous works mostly ne-
glect reaction-text modeling: they primarily
focus on modeling individual molecule-text
pairs or learning chemical reactions without
texts in context. Additionally, one key task of
reaction-text modeling – experimental proce-
dure prediction – is less explored due to the
absence of an open-source dataset. The task is
to predict step-by-step actions of conducting
chemical experiments and is crucial to automat-
ing chemical synthesis. To resolve the chal-
lenges above, we propose a new pretraining
method, ReactXT, for reaction-text modeling,
and a new dataset, OpenExp, for experimental
procedure prediction. Specifically, ReactXT
features three types of input contexts to incre-
mentally pretrain LMs. Each of the three in-
put contexts corresponds to a pretraining task
to improve the text-based understanding of ei-
ther reactions or single molecules. ReactXT
demonstrates consistent improvements in ex-
perimental procedure prediction and molecule
captioning and offers competitive results in ret-
rosynthesis. Our code is available at https:
//github.com/syr-cn/ReactXT.

1 Introduction

Multi-modal large language models (LMs) have
recently attracted extensive research attention. Re-
markably, in the vision-language domain, LMs
enhanced with visual encoders show impressive
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Institute of Dataspace, Hefei Comprehensive National Science
Center.

results in visual question-answering and image
captioning (Liu et al., 2023a; Li et al., 2023). In-
spired by their successes, molecule-text modeling
(MTM) becomes an emerging research field (Liu
et al., 2023b; Zeng et al., 2022; Su et al., 2022),
aiming to build the natural language interface for
molecular tasks, including text-guided molecule
generation, molecule captioning, and molecule-text
retrieval (Edwards et al., 2022; Liu et al., 2022).

Building upon these MTM works, we study
reaction-text modeling (RTM), aiming to im-
prove LMs’ performance on reaction-relevant tasks.
Chemical reactions, involving the transformation of
reactants into products, are fundamental to advanc-
ing drug discovery and material science (Schwaller
et al., 2022). Revisiting prior works, we identify
key research gaps in both the learning paradigm
and the evaluation benchmark for RTM:

• Learning Paradigm. Most prior works either
focus on generating the textual description of a
single molecule (cf. Figure 1a) (Liu et al., 2023b;
Edwards et al., 2022; Su et al., 2022), or apply
LMs for chemical reaction prediction without in-
cluding the textual descriptions of molecules/re-
actions in context (cf. Figure 1b) (Christofidellis
et al., 2023; Fang et al., 2023b; Born and Man-
ica, 2023). Such methods overlook the potential
knowledge in textual descriptions to improve per-
formance. Pioneer works (Shi et al., 2023; Guo
et al., 2023) include labels of molecular roles and
experimental conditions when prompting Chat-
GPT, but achieve suboptimal performances for
being limited to prompt engineering.

• Evaluation Benchmark. An open-source
dataset for experimental procedure prediction is
notably missing. As illustrated in Figure 2, exper-
imental procedure prediction aims to deduce the
step-by-step actions for experimental execution
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Figure 1: Comparison of molecule-text generative modeling methods. Orange arrows denote the chemical
relations for generation. 2D graph embeddings (Liu et al., 2023b) are omitted here for simplicity, but are added in
the final framework for improved performance. $DESCj denotes the description of the j-th molecule. The chemical
reaction in Figures (b) and (d) is: COC(OC)N(C)C + CCC(=O)CC(=O)OC → CCC(=O)/C(=C/N(C)C)C(=O)OC.

1. MAKESOLUTION with $1$ (140 
mg, 0.37 mmol) and $2$ (112 
mg, 0.74 mmol) and $3$ (4 mL); 

2. STIR for 16 hours at 70°C; 
3. CONCENTRATE; 
4. DRYSOLID under vacuum; 
5. YIELD $-1$ (82 mg, 51%).

Structured actions of 
experimental procedure

A solution of (5-Chloro-3-methyl-pyridin-2-ylmethyl)-isoquinolin-1-
ylmethyl-piperidine-4-yl-amine (140 mg, 0.37 mmol) and N-
(phenoxycarbonyl) hydroxylamine (112 mg, 0.74 mmol) in 
anhydrous THF (4 mL) was stirred for 16 hours at 70° C. The 
solution was then cooled and concentrated under reduced 
pressure and dried in vacuo. The crude material was purified by 
column chromatography with silica gel (50:1:0.1 CH2Cl2/MeOH/
NH4OH) to give COMPOUND 308 as a white solid (82 mg, 51%). 

Description 
to Action

+ →

Cc1cc(Cl)cnc1CN(Cc1nccc2ccccc12)C1CCNCC1 + O=C(NO)Oc1ccccc1 
→ Cc1cc(Cl)cnc1CN(Cc1nccc2ccccc12)C1CCN(C(=O)NO)CC1

Source: Chemical papers and patents

Chemical reaction Unstructured description of experimental procedure

Multi-modal Language Model
Input Output

Extracted instructions

Reactant Reactant ProductSolvent

1D input: SMILES, exp. conditions, etc.
2D input: molecular graphs 1D output: experimental actions

TEMP
70°C 

Task 
definition

Dataset 
curation $1$

$2$
$3$

$-1$

Figure 2: Illustration of the experimental procedure prediction task and its dataset curation process. We employ the
actions defined by (Vaucher et al., 2021) and the description to action model from (Christofidellis et al., 2023).

through interpreting chemical reactions (Vaucher
et al., 2021), which has a significant value for au-
tomating chemical synthesis processes (Vaucher
et al., 2020; Zeng et al., 2023). This task aligns
well with our focus on RTM, requiring an un-
derstanding of chemical reactions and a textual
interface to articulate experimental steps. Unfor-
tunately, the absence of public datasets hinders
further research and development in this area.

Addressing the identified research gaps, we
propose Reaction-Contextualized Molecule-Text
Pretraining (ReactXT), aiming to improve the
text-based understanding of chemical reactions
and molecules. Further, we construct an open-
source dataset for experimental procedure predic-
tion (OpenExp), serving as a key benchmark to
evaluate RTM methods. Below, we elaborate on
their details.

ReactXT aims to improve the learning paradigm
of RTM by introducing three types of input con-
texts, each of which corresponds to a pretraining
task to improve LMs’ understanding of chemical
reactions or individual molecules. As Figure 1d

depicts, the forward reaction context is crafted to
learn the chemical connections among molecules
involved in the same reaction. These connections
are grounded on chemical reaction principles, such
as the conservation laws (Atkins and Jones, 2007).
Building on this molecular interplay, we hypoth-
esize that understanding other molecules in the
same reaction and their descriptions can help pre-
dict the current molecule and its textual description.
ReactXT encourages LMs to harness these inter-
molecule relationships to improve their ability to
generate molecular descriptions in reactions and,
in turn, deepen their understanding of chemical
reaction principles. Further, a backward reaction
context is introduced to support retrosynthesis tasks
(cf. Section 3.1). Finally, as Figure 1c illustrates,
ReactXT includes the random molecule context,
cultivating the LMs’ understanding of individual
molecules outside their reactions.

OpenExp features 274, 439 pairs of chemical
reactions and their corresponding step-by-step in-
structions of experimental procedures. This dataset,
compiled from the USPTO-Applications (Lowe,
2017) and ORD (Kearnes et al., 2021) databases,



will be released under the CC-BY-SA license. To
ensure data quality, we have conducted careful data
preprocessing. Further, we invite human experts to
evaluate the dataset quality. Out of 100 randomly
chosen samples, 50 samples could be directly used
without any human intervention, and 90 samples
required only minor modifications for experimental
execution (cf. Figure 5).

Our contributions can be summarized as follows:

• We propose ReactXT, a method that incorporates
three types of input contexts to incrementally
pretrain an LM. These contexts are tailored to en-
hance LMs’ understanding of chemical reactions
and individual molecules.

• We curate an open-source experimental proce-
dure prediction dataset OpenExp, a new bench-
mark for automating chemical synthesis research.

• ReactXT achieves state-of-the-art performances
for experimental procedure prediction on the
OpenExp dataset, highlighting its superior RTM
ability. It also outperforms baselines by 3.2%
for molecule captioning on the PubChem324k
dataset. ReactXT has competitive performances
for retrosynthesis, and we are refining it to sur-
pass the current state-of-the-art method.

2 Related Works

Molecule-Text Modeling (MTM). MTM aims
to jointly model molecules and texts to address
text-related molecular tasks (Edwards et al., 2022,
2021). Molecules can be represented by 1D se-
quences of SMILES (Weininger, 1988) and SELF-
IES (Krenn et al., 2020), making it feasible to pre-
train unified LMs on mixed 1D sequences of texts
and molecules (Taylor et al., 2022; Edwards et al.,
2022; Chithrananda et al., 2020; Zeng et al., 2022).
Further, these LMs can be aligned to human pref-
erence via instruction tuning (Christofidellis et al.,
2023; Fang et al., 2023b). In parallel to 1D LMs,
multi-modal methods are also studied, using graph
neural networks (GNNs) (Hu et al., 2020; Liu et al.,
2023c) to encode 2D molecular graphs. Notably,
CLIP-style (Radford et al., 2021) cross-modal con-
trastive learning and BLIP2-style (Li et al., 2023)
cross-modal projector are both investigated to fa-
cilitate molecule-text retrieval (Su et al., 2022; Liu
et al., 2022), and molecule-to-text generation (Liu
et al., 2023b; Li et al., 2024), respectively. Re-
cently, MolTC (Fang et al., 2024b) is also pro-
posed to model molecular interactions using chain

of thoughts. However, prior works mainly focus on
individual molecules rather than chemical reactions.
To bridge the gap, ReactXT explores reaction-text
modeling, facilitating reaction-relevant tasks with
a text interface and textual knowledge.

Experimental Procedure Prediction. Synthe-
sizing complex compounds requires detailed plan-
ning of synthetic pathways and intermediate steps,
a process that is both labor-intensive and complex.
Machine learning (ML) can potentially automate
the process by predicting experimental procedures.
Prior works have explored predicting reaction con-
ditions (e.g., catalyst and solvent) (Gao et al., 2018)
and sequences of synthesis steps (Vaucher et al.,
2021) by reading chemical reactions. Given known
experimental procedures, ML is also explored to
empower chemical lab robots (Burger et al., 2020),
and automated lab pipelines (Coley et al., 2019;
Nicolaou et al., 2020). Notably, tool-augmented
GPT4 (OpenAI, 2023) is explored to plan and ex-
ecute known chemical experiments (Boiko et al.,
2023). Unlike prior works, our OpenExp dataset is
the first open-source dataset to facilitate the proce-
dure prediction of unseen chemical experiments.

Retrosynthesis and Chemical Reaction Pre-
diction. Given a chemical reaction, retrosynthe-
sis is to predict reactants from products and reac-
tion prediction is to predict products from reac-
tants (Schwaller et al., 2022). They can be for-
malized as sequence-to-sequence translation rep-
resented by SMILES strings (Liu et al., 2017; Ir-
win et al., 2022; Zhong et al., 2022; Tetko et al.,
2020; Ucak et al., 2022). Concurrently, 2D molec-
ular graphs are explored for reaction prediction:
selection-based methods focus on classifying the
most suitable reaction templates (Chen and Jung,
2021; Dai et al., 2019); and graph-based generative
models directly synthesize target molecules (Shi
et al., 2020; Sacha et al., 2021; Yan et al., 2020).
However, the methods above leverage only reac-
tions without texts. While notably two pioneer
works apply ChatGPT for reaction prediction (Shi
et al., 2023; Bran et al., 2023), their performances
are limited to exploring only prompt engineering.

3 ReactXT: Reaction-Contextualized
Molecule-Text Pretraining

ReactXT consists of two key components: 1) the
method of creating input contexts to incrementally
pretrain an LM, and 2) a balanced sampling strategy
for the reaction contexts. We begin by introducing
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Figure 3: Illustration of Reaction-Contextualized Molecule-Text Pretraining. Example uses forward reaction context.

Context Type Prompt Template

Forward reaction Reactants: $SMI1 <Mol1> $DESC1;︸ ︷︷ ︸
×n: Number of reactants

Solvent: $SMIn+1 <Moln+1> $DESCn+1; Product: $SMIn+2 <Moln+2> $DESCn+2<STOP>

Backward reaction Product: $SMI1 <Mol1> $DESC1; Solvent: $SMI2 <Mol2> $DESC2; Reactants: $SMI3 <Mol3> $DESC3︸ ︷︷ ︸
×n: Number of reactants

<STOP>

Random molecule $SMI1 <Mol1> $DESC1; $SMI2 <Mol2> $DESC2; $SMI3 <Mol3> $DESC3; $SMI4 <Mol4> $DESC4<STOP>

Table 1: Prompt templates for creating input contexts. <Moli> is the placeholder for the 2D graph embedding of the
i-th molecule; $SMIi and $DESCi is the SMILES and textual description for the i-th molecule, respectively.

[Abstract] The invention relates to indole acetic acid compounds which function as antagonists of the CRTH2 receptor. The invention also relates to the use of
these compounds to inhibit the binding of prostaglandin D2 and its metabolites or certain thromboxane metabolites to the CRTH2 receptor and to treat disorders
responsive to such inhibition. [Properties] Molecular Weight: 547.60; XLogP3: 6.10; Hydrogen Bond Donor Count: 0; Hydrogen Bond Acceptor Count: 7;
Rotatable Bond Count: 8; Exact Mass: 547.19; Monoisotopic Mass: 547.19; Topological Polar Surface Area: 89.40; Heavy Atom Count: 39; Formal Charge: 0;
Complexity: 1020; Isotope Atom Count: 0; Defined Atom Stereocenter Count: 0; Undefined Atom Stereocenter Count: 0; Defined Bond Stereocenter Count: 0;
Undefined Bond Stereocenter Count: 0; Covalently-Bonded Unit Count: 1; Compound Is Canonicalized: Yes.

Table 2: Molecule description example, including the patent abstract and the computed/experimental properties.
The described molecule is Cc1c(C2=NN(CCc3ccccc3)S(=O)(=O)c3ccccc32)c2cc(F)ccc2n1CC(=O)OC(C)(C)C.

our multi-modal LM backbone, then proceed to
elaborate on ReactXT’s two components.

Multi-Modal Language Model Backbone.
Molecules can be represented by their 1D SMILES
or 2D molecular graphs (Wells, 2012). We em-
ploy MolCA (Liu et al., 2023b) as our primary LM
backbone to effectively harness both the 1D and
2D molecular modalities. Specifically, MolCA in-
corporates a GNN encoder (You et al., 2020) for
encoding 2D molecular graphs. This GNN’s output
then is mapped to an LM’s (i.e., Galactica; Taylor
et al. (2022)) input space via a cross-modal projec-
tor, thereby enabling the LM to perceive 2D molec-
ular graphs. Both the cross-modal projector and the
GNN have been pretrained for molecule-text align-
ment (Li et al., 2023). MolCA shows promising
performances when finetuned for molecule caption-
ing and IUPAC name prediction.

3.1 Creating Input Contexts

Addressing the core challenges of LMs hinges on
the careful selection of the input data. As shown in
Table 1, ReactXT incorporates three types of input
contexts to incrementally pretrain LMs: forward

reaction context, backward reaction context, and
random molecule context. These contexts are tai-
lored for a text-based understanding of chemical
reactions and individual molecules:

• Forward Reaction Context. As Figure 3 il-
lustrates, the forward reaction context labels
molecules according to their roles – Reactant,
Catalyst, Solvent, and Product – in the reac-
tion, and arranges them in this specific sequential
order. Note, not every reaction has a Catalyst
or Solvent. For each molecule, we append its
2D molecular graph embeddings (e.g., <Mol1>;
Liu et al. (2023b)) after its SMILES to enhance
the LM’s understanding of molecular structures;
and append molecular descriptions (e.g., $DESC1)
following the 2D molecular graph embeddings
to align molecules with texts.

• Backward Reaction Context. Similar to the
forward context but with the order of molecular
roles reversed, this context aims to combat the
Reversal Curse (Berglund et al., 2023) of LMs:
LMs trained on “A is B” fail to generalize to “B
is A”. The reversal generalization is crucial be-



cause downstream applications include backward
retrosynthesis (Schwaller et al., 2022).

• Random Molecule Context. Introduced to en-
sure LMs retain the capability to describe indi-
vidual molecules outside chemical reactions.

Context Length. In each input context, we use
up to k molecules and their descriptions, where
k is a hyperparameter. For reactions with over k
molecules, we apply weighted molecule sampling,
as explained in Section 3.2.

Molecule Descriptions. One crucial component
of the input contexts is the molecule description,
whose quality and comprehensiveness are vital for
molecule-text alignment. We collect molecular de-
scriptions and properties from multiple sources,
encompassing three types of content:

• Molecule Patent Abstracts. We source patent
abstracts from PubChem’s Patent View*. These
abstracts typically describe molecular structures,
properties, or applications, but may also in-
clude irrelevant information if the molecule is
merely mentioned in passing rather than be-
ing the central subject. Despite the noise,
patent abstracts are indispensable for RTM: they
cover ∼95% molecules in our employed reaction
databases (Lowe, 2017; Kearnes et al., 2021). In
contrast, the molecule-text datasets (Liu et al.,
2022, 2023b) derived from PubChem’s descrip-
tion section only cover ∼1% of these molecules.

• Computed and Experimental Properties. We
retrieve these numerical properties from Pub-
Chem, aiming to enhance the understanding of
molecular structures through predictive learning.
Certain properties are also helpful for reaction
prediction. For example, knowing the solubility
helps determine concentrations when preparing
solutions; the knowledge of melting and boiling
points helps identify the states of matter at given
temperatures. Table 2 shows an example of a
patent abstract and computed/experimental prop-
erties. Table 14 includes detailed statistics of our
collected molecule properties.

• PubChem Descriptions. Following (Liu et al.,
2022, 2023b), we employ molecular descrip-
tions from PubChem. Due to their limited
coverage (∼1%) for molecules in reaction
databases (Lowe, 2017; Kearnes et al., 2021),

*https://pubchem.ncbi.nlm.nih.gov/docs/
patents

Figure 4: Distribution of molecules in the pretraining
chemical reactions. For after adjustment, we conduct
weighted sampling of chemical reactions matching the
size of the pretraining dataset.

we incorporate them exclusively for the random
molecule context.

Autoregressive Language Modeling for Inter-
leaved Molecule-Text Sequences. Given the input
contexts above of interleaved molecules and texts,
we apply language modeling loss to incrementally
pretrain the LM, molecule encoder, and projector.
We compute loss only for text tokens, excluding
2D molecular graph embeddings.

3.2 Balanced Sampling of Reaction Contexts
Figure 4 reveals a skewed distribution of molecules
in chemical reactions (the red bars), with a small
group of molecules appearing far more frequently
than others. To address this imbalance, we de-
velop a sampling strategy that promotes a fairer
representation of molecules across reactions. This
method reduces the dominance of commonly oc-
curring molecules by adjusting 1) the sampling
weight of each reaction r: W (r), and 2) the sam-
pling weight of each molecule m within a chosen
reaction r: W (m|r), based on the equations below:

W (r) =

∑
m∈r 1/Count(m)∑

r′∈R
∑

m∈r 1/Count(m)
, (1)

W (m|r) = 1/Count(m)∑
m′∈r 1/Count(m′)

, (2)

where R denotes the dataset of chemical reactions;
Count(m) denotes molecule m’s count in R.

Equation (1) sets a reaction’s sampling weight in-
versely to the total occurrences of its molecules, fa-
voring reactions with rare molecules; Equation (2)
boosts the weights of rarer molecules within a
given reaction. These weights are then applied
for weighted random sampling without replace-
ment (Efraimidis and Spirakis, 2006). The blue

https://pubchem.ncbi.nlm.nih.gov/docs/patents
https://pubchem.ncbi.nlm.nih.gov/docs/patents


Total reactions 2262637 100%

Too large perplexity score 329160 14.55%
More than one product 105577 4.67%
Incomplete mapping of molecules
(from chemical equation)

1034908 45.74%

Incomplete mapping of molecules
(from action sequence)

178689 7.90%

Remove duplicate reactions 254099 11.23%
Filter out too short actions 14022 0.62%
Other errors 71743 3.16%

Remaining reactions 274439 12.13%

Table 3: Preprocessing steps and the number of samples
removed at each step.

Dataset Total Train Valid Test Open Source

Vaucher et al. (2021) 693k 555k 69k 69k No
OpenExp, Ours 274k 220k 27k 27k Yes

Table 4: Dataset statistics and comparison to prior work.

bars in Figure 4 present the sampling frequency of
molecules after adjustment, showing a flatter distri-
bution. Implementation details are in Appendix B.

4 OpenExp: An Open-Source Dataset for
Experimental Procedure Prediction

Here we briefly introduce OpenExp’s curation
process and defer the details to Appendix A.1.
OpenExp is sourced from chemical reaction
databases of USPTO-Applications (Lowe, 2017)
and ORD (Kearnes et al., 2021). As illustrated in
Figure 2, these databases include chemical reac-
tions and the corresponding unstructured descrip-
tions of experimental procedures. To convert these
unstructured descriptions into structured action se-
quences, we first run the pragraph2action model
from (Christofidellis et al., 2023), and then conduct
preprocessing following (Vaucher et al., 2021). The
preprocessing is to remove low-quality data, elim-
inate duplicates, and construct molecule mapping
between reactions and experimental procedures.
Specific preprocessing steps are summarized in Ta-
ble 3. An example is shown in Table 11.

As shown in Table 4, the final OpenExp dataset
includes 274k reaction-procedure pairs. It is ran-
domly divided into train/valid/test sets by the 8:1:1
ratio. Compared to the prior work (Vaucher et al.,
2021), which is closed-source for using the com-
mercial Pistachio database†, we open-source this
dataset to assist future research.

To obtain insights on dataset quality, we invite
†https://www.nextmovesoftware.com/pistachio
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Figure 5: Human evaluations on OpenExp.

two graduate students in chemistry to rate the align-
ment between the action sequences and their orig-
inal descriptions, on a scale from 1 (lowest) to 5
(highest), as depicted in Figure 5. Briefly, of the
total 250 samples evaluated, 126 (≥ 50%) action
sequences have at most 1 error (scores above 4),
and 181 (≥ 50%) action sequences have at most
2 errors (scores above 3). Our closer inspection
shows that the one error in score-4 samples is usu-
ally a typo of material/action name, or a discrep-
ancy of numerical value, and does not impede the
overall execution. See Appendix C.3.2 for details.

5 Experiment

We empirically evaluate ReactXT across three
downstream tasks, including experimental procedu-
ral prediction, molecule captioning, and retrosyn-
thesis. Further, we include ablation studies show-
casing the contributions of individual components.
To ensure the significance of our experimental, we
include statistical tests results in Appendix C.2.

5.1 Experimental Setting

ReactXT is initialized by the stage-2 checkpoint
of MolCA1.3B (Liu et al., 2023b), if not specially
noted. It is then pretrained using our proposed
method, and subsequently finetuned for each down-
stream dataset separately. The context length k is
4. We employ full-parameter tuning for pretraining
and finetuning. More details are in Appendix B.

ReactXT’s Pretraining Dataset. Our pre-
train dataset includes PubChem324k’s pretrain
subset (Liu et al., 2023b), which includes 298k
molecule-text pairs, and 1.11 million chemical
reactions from the USPTO-Applications (Lowe,
2017) and ORD (Kearnes et al., 2021) databases.
For molecules in reactions, we obtain their patent
abstracts and molecular properties following Sec-
tion 3.1. To prevent information leakage, we have
excluded 54k reactions that appear in the valid/test
sets of the downstream datasets (i.e., OpenExp,
USPTO-50K (Schneider et al., 2016)) from the
initial collection of 1.16 million reactions. See

https://www.nextmovesoftware.com/pistachio


Method Validity BLEU-2 BLEU-4 100%LEV 90%LEV 75%LEV 50%LEV ROUGE-1 ROUGE-2 ROUGE-L

Random, among all reactions 63.2 34.5 19.1 0.0 0.0 0.0 13.6 46.6 18.1 36.4
Random, compatible pattern 100.0 37.8 22.1 0.0 0.0 0.1 16.5 47.8 21.0 38.4
Nearest neighbor 76.0 45.0 30.7 0.6 6.5 13.0 38.4 55.7 29.2 47.0

TextChemT5220M 99.3 54.1 40.6 0.4 4.6 13.7 61.2 61.5 40.3 56.4
MolT5-Large780M 99.6 54.5 41.0 0.6 6.6 16.6 63.7 62.5 40.9 57.2
Galactica1.3B 99.9 53.5 39.5 0.4 5.7 13.4 60.5 60.9 38.6 55.2
MolCA, Galac1.3B 99.9 54.9 41.5 1.0 9.2 18.9 65.3 62.5 40.4 57.0

ReactXT, Galac1.3B, Ours 100.0 57.4 44.0 1.0 9.5 22.6 70.2 64.4 42.7 58.9

Table 5: Comparison of experimental procedure prediction performances (%) on the OpenExp dataset. The subscript
denotes each model’s parameter size. We conduct full-parameter fine-tuning for all models.

Method BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

MolT5-Small80M 14.8 8.5 26.5 13.5 23.6 18.5
MolT5-Base250M 30.1 20.9 40.3 25.1 33.8 35.6
MolT5-Large780M 30.2 22.2 41.5 25.9 34.8 36.6
Galactica1.3B, LoRA ft 34.6 26.9 46.3 32.3 41.5 41.1

MoMu-Small82M 19.1 12.0 29.7 16.3 26.7 21.8
MoMu-Base252M 30.2 21.5 40.5 25.1 34.4 34.2
MoMu-Large782M 31.1 22.8 41.8 25.7 36.7 36.2
MolCA, MolT5-Large877M 32.9 26.3 49.8 35.7 44.2 42.4
MolCA, Galac125M 31.9 24.3 47.3 33.9 43.2 41.6
MolCA, Galac1.3B, LoRA ft 38.7 30.3 50.2 35.9 44.5 45.6
MolCA, Galac1.3B, full ft* 39.4 32.2 52.7 39.4 47.6 49.2

ReactXT, Galac1.3B, Ours 42.6 35.2 54.7 41.7 49.6 51.2

(a) PubChem324k dataset.

Method BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

MolT5-Small80M 51.9 43.6 62.0 46.9 56.3 55.1
MolT5-Base250M 54.0 45.7 63.4 48.5 57.8 56.9
MolT5-Large780M 59.4 50.8 65.4 51.0 59.4 61.4
TextChemT560M 56.0 47.0 63.8 48.8 58.0 58.8
TextChemT5220M 62.5 54.2 68.2 54.3 62.2 64.8

MoMu-Small82M 53.2 44.5 - - 56.4 55.7
MoMu-Base252M 54.9 46.2 - - 57.5 57.6
MoMu-Large782M 59.9 51.5 - - 59.3 59.7
MolCA, Galac125M 61.2 52.6 67.4 52.1 60.6 63.6
MolCA, Galac1.3B, LoRA ft 62.0 53.1 68.1 53.7 61.8 65.1

ReactXT, Galac1.3B 62.9 55.0 69.2 56.0 63.4 66.4

(b) CheBI-20 dataset.
Table 6: Molecule captioning performance (%) on the PubChem324k and CheBI-20 datasets. * denotes our
re-implementation. Other baseline results are borrowed from (Liu et al., 2023b; Christofidellis et al., 2023).

Method Top-1 Top-3 Top-5 Top-10

MEGAN 48.1 70.7 78.4 86.1
AT 53.5 - 81.0 85.7
Chemformer 54.3 - 62.3 63.0

Train with aug., test without aug.
R-SMILES 51.2 74.9 81.1 83.0
MolT5-Large780M* 53.9 69.9 74.6 77.3
ReactXT, Galac1.3B, Ours 54.4 73.6 78.9 83.0

Train with aug., test with aug.
R-SMILES 56.3 79.2 86.2 91.0
MolT5-Large780M* 56.0 76.0 80.7 85.1
ReactXT, Galac1.3B, Ours 58.6 81.1 86.5 91.0

Table 7: Retrosynthesis accuracies (%) on USPTO-50K.
* denotes our re-implementation. Other baselines are
from (Zhong et al., 2022). In each part, bold denotes
the best result, and underline denotes the second best.

Appendix A.2 for more details.
Baselines. We compare ReactXT with the

state-of-the-art LMs in science domain, includ-
ing Galactica (Taylor et al., 2022), MolT5 (Ed-
wards et al., 2022), TextChemT5 (Christofidel-
lis et al., 2023), and MolCA (Liu et al., 2023b).
For retrosynthesis and forward reaction prediction
tasks, we also compare with task-specific LMs: R-
SMILES (Zhong et al., 2022), AT (Tetko et al.,
2020), MEGAN (Sacha et al., 2021), and Chem-
former (Irwin et al., 2022). For captioning, we ad-
ditionally compare against MoMu (Su et al., 2022).

5.2 Experimental Procedure Prediction
Following (Vaucher et al., 2021), we employ
the following evaluation metrics: Validity, which



Pretrain Input Context Pretrain Data Type BLEU-2 BLEU-4 75%LEV 50%LEV ROUGE-1 ROUGE-2 ROUGE-L

No incremental pretrain - 54.9 41.5 18.9 65.3 62.5 40.4 57.0
Random molecules reaction, sing. mol. 56.6 43.2 20.9 69.4 63.8 41.9 58.3
Reactions w/o bal. samp. reaction 56.8 43.3 21.3 69.2 64.0 42.1 58.5
Reactions reaction 57.1 43.8 22.2 70.1 64.3 42.6 58.9
ReactXT reaction, sing. mol. 57.4 44.0 22.6 70.2 64.4 42.7 58.9

Table 8: Ablation study of input contexts for incrementally pretrain MolCA, Galac1.3B. Results are for experimental
procedure prediction. Reactions denote both the forward reaction context and the backward reaction context.

Backbone LM BLEU-2 BLEU-4 75%LEV 50%LEV ROUGE-1 ROUGE-2 ROUGE-L

MolT5-Large780M 54.5 41.0 16.6 63.7 62.5 40.9 57.2
MolT5-Large780M, ReactXT pretrain 55.6 42.1 17.2 66.6 63.6 41.7 58.1

Galactica1.3B 53.5 39.5 13.4 60.5 60.9 38.6 55.2
Galactica1.3B, ReactXT pretrain 56.5 43.1 20.8 68.7 63.7 41.8 58.2

MolCA, Galac1.3B 54.9 41.5 18.9 65.3 62.5 40.4 57.0
MolCA, Galac1.3B, ReactXT pretrain 57.1 43.8 22.2 70.1 64.3 42.6 58.9

Table 9: Ablation study of ReactXT pretraining for experimental procedure prediction.

checks the syntactical correctness of the action se-
quence; machine-translation metrics BLUE (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004); and
the normalized Levenshtein similarity (Levenshtein
et al., 1966). Specifically, 90%LEV denotes the
proportion of predictions with a normalized Lev-
enshtein score larger than 0.9. The three naive
baselines based on random sampling and nearest
neighbor are borrowed from (Vaucher et al., 2021).
See Appendix B for details.

Table 5 presents the performances. We can
observe that ReactXT consistently outperforms
baselines across all metrics. Specifically, it sur-
passes baselines by 2.2% for BLEU-2 and 3.3% for
75%LEV, demonstrating ReactXT’s effectiveness
for text-based reaction understanding.

5.3 Molecule Captioning

To evaluate ReactXT’s ability to understand
single-molecules, we present its performances of
molecule captioning on the PubChem324k (Liu
et al., 2023b) and CheBI-20 (Edwards et al.,
2022) datasets. We report metrics of BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005).

Table 6 presents the captioning performances.
We can observe that ReactXT consistently outper-
forms the baselines. Specifically, ReactXT shows
improvements of 3.2% BLEU-2 and 2.3% ROUGE-
2 scores on PubChem324k, and 1.7% ROUGE-2
on CheBI-20. These improvements underscore the
effectiveness of our pretraining method for enhanc-
ing understanding of individual molecules.

5.4 Retrosynthesis

Retrosynthesis is to predict the reactant molecules
given the product molecules. For this task, we
employ the evaluation metrics of top-k accuracy,
which measures the percentage of exact match to
the ground truth in the top-k predictions. Fol-
lowing (Zhong et al., 2022), we conduct self-
supervised pretraining on the USPTO-full(Dai
et al., 2019) dataset and use the root-aligned aug-
mentations of SMILES during training and testing.
Additionally, we report performances of testing
without these augmentations.

Table 7 presents the results. ReactXT outper-
forms R-SMILES across all metrics when testing
with augmentations. Notably, the improvement in
top-1 accuracy is particularly significant, achieving
a 2.3% increase over the second best value. Re-
gardless of whether test set data augmentation is
applied, ReactXT achieves better top-k accuracies
than MolT5-Large, which is also a multimodal LM.
These performance improvements stem from Reac-
tXT’s use of reactions for pretraining, rather than
individual molecules.

5.5 Ablation Study

In this section, we conduct ablation studies to show
the impact of different pretrain data types and back-
bone LMs in our method.

Pretrain Data Type. We ablate the key compo-
nents of ReactXT, using the baseline of MolCA,
Galac1.3B without incremental pretraining. Table 8
presents the results. Specifically, we compare three
variants of ReactXT: 1) pretraining with solely the



random molecule contexts using the same pretrain
dataset; 2) pretraining with forward and backward
reaction contexts without the random molecule con-
text; and 3) applying uniform sampling on reaction
contexts instead of balanced sampling.

We can observe that 1) ReactXT’s full model
shows the best performance, showing its perfor-
mance is the integrated contribution of all com-
ponents; 2) applying random molecule contexts
alone improves upon the baseline, underscoring
the valuable textual knowledge from our meticu-
lously crafted pretraining dataset; 3) incorporat-
ing reaction contexts yields better results than ran-
dom molecule contexts, highlighting the benefits
of learning reaction knowledge during pretrain-
ing; and 4) balanced sampling improves the perfor-
mance upon uniform sampling.

Backbone LMs. We conduct ablation studies
on the backbone LMs. This study involves three
different molecular-text LMs: 1) MolCA, which
represents molecules using both 1D SMILES and
2D graphs, based on a decoder-only architecture;
2) Galactica, which represents molecules using 1D
SMILES, based on a decoder-only architecture;
and 3) MolT5, which represents molecules using
1D SMILES, based on an encoder-decoder archi-
tecture. The experimental results are presented in
Table 9. We can observe that the ReactXT pretrain-
ing scheme achieves consistent performance im-
provements, regardless of the backbone language
model used.

6 Conclusion and Future Works

In this work, we explore reaction-text modeling to
empower reaction-relevant tasks with textual inter-
faces and knowledge. We present ReactXT, a pre-
training method to learn chemical reactions within
the context of the corresponding molecular tex-
tual descriptions. Additionally, we propose a new
dataset OpenExp to support open-source research
for experimental procedure prediction. ReactXT
establishes the best performances across tasks of
experimental procedure prediction and molecule
captioning. It presents competitive performances
for retrosynthesis.

In future work, we plan to apply LMs to learn the
interactions among large molecules (e.g., proteins
and nucleic acids), or introduce molecules’ dynam-
ics and 3D spatial structures for better molecule-
language understanding (Luo et al., 2023). We
are also interested in exploring molecular LMs for

OOD generalization (Fang et al., 2023a, 2024a).

Limitations

In this and also the previous work (Vaucher et al.,
2021), the evaluation for experimental procedure
prediction is constrained to the comparison be-
tween the predictions and the reference action se-
quences. While improving this metric does reflect
the improvement in experimental design, it should
be acknowledged that the evaluation of real-world
chemical experiments is preferred for the devel-
oped models in future. For this purpose, the meth-
ods on automated chemistry pipelines (Boiko et al.,
2023; Coley et al., 2019; Nicolaou et al., 2020) can
be potentially considered.

Another limitation or future direction is improv-
ing the action space defined in our proposed Open-
Exp dataset, aiming to cover a wider range of chem-
ical experiments. For example, the action of ‘Pu-
rify’ is absent; and the action of ‘Concentration’
can be refined into operations such as ‘Evapora-
tion’ and ‘Pressurize’ for clearer instructions of
chemical experiments.

Potential Ethics Impact

In this study, the proposed method and dataset fo-
cus on chemical reactions and molecules, and in-
clude no human subjects. Consequently, we believe
this study presents no direct ethical concerns. How-
ever, the inclusion of LMs in our study does raise
potential issues, as LMs can be misused to produce
incorrect or biased information. Therefore, the
ethical implications of our work align with those
common to LM research, emphasizing the need for
responsible use and application of LMs.
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A Dataset Details

A.1 Collection and Preprocessing of OpenExp
OpenExp is compiled from the raw data from the
two following sources:

• USPTO-Applications (Lowe, 2017). This
dataset comprises records of 1.94 million reac-
tions and their corresponding applications from
the United States Patent and Trademark Office
(USPTO) published between 2001 and Septem-
ber 2016. We download the raw XML files from
the Figshare website ‡. For each reaction in
this dataset, we extract its key information from
four elements: <productList>, which contains
the products of the reaction; <reactantList>,
detailing the reactants; <spectatorList>, en-
compassing the catalysts and solvents; and
<dl:paragraphText>, which provides a textual
description of the experimental procedures.

• Open Reaction Database (Kearnes et al., 2021).
The ORD § dataset contains over 2 million chem-
ical reactions, which include detailed records of
reaction conditions and experimental procedures.
It includes data from the USPTO applications
(2001-2016 Sep), USPTO-granted patents (1976-
2016 Sep), and experimental records from chem-
ical literature.

Paragraph2Action. As illustrated in Figure 2,
these databases include chemical reactions and
the corresponding unstructured descriptions of
experimental procedures. The unstructured na-
ture of these descriptions poses a significant chal-
lenge to 1) automate chemical synthesis with
robots (Vaucher et al., 2020; Burger et al., 2020);
and 2) apply ML methods to predict experimen-
tal procedures of unseen reactions. To address
this, the task of paragraph2action (Vaucher et al.,
2020; Zeng et al., 2023) is proposed, aiming to
convert unstructured experimental procedure de-
scriptions into structured, step-by-step instructions
with pre-defined actions. In this study, we lever-
age the action space defined by (Vaucher et al.,
2020, 2021), and the pragraph2action model re-
leased by (Christofidellis et al., 2023).

Preprocessing. Following (Vaucher et al.,
2021), we conduct preprocessing after the para-
graph2action conversion, The preprocessing has

‡https://figshare.com/articles/dataset/
Chemical_reactions_from_US_patents_1976-Sep2016_
/5104873?file=8664370

§https://open-reaction-database.org

Action Occurrence Action Occurrence

Add 744, 533 Wait 38, 211
Stir 287, 413 Recrystal. 25, 600
Concentrate 276, 551 PhaseSepa. 24, 141
Yield 274, 439 PH 21, 756
MakeSolution 272, 537 Quench 18, 699
Filter 247, 625 Partition 16, 045
Wash 224, 286 Triturate 13, 390
DrySolution 178, 248 DrySolid 6, 435
CollectLayer 146, 379 Degas 4, 789
Extract 114, 855 Microwave 2, 237
SetTemp. 44, 126 Sonicate 450
Reflux 43, 296

Table 10: Action space and actions’ occurrences in the
OpenExp dataset.

two purposes: 1) extracting the important entities
(i.e., molecules) in experimental procedures and
mapping all molecules to their precursors in the
chemical reaction; 2) applying a rule-based filtra-
tion to improve the dataset quality. Our preprocess-
ing strategy is inspired by (Vaucher et al., 2020),
augmented with additional 2 steps: perplexity filter-
ing and similar action aggregation. The complete
preprocessing steps are listed below:

• Perplexity Filtering. To ensure the quality of the
above translation step, we compute a perplexity
score for each output and exclude samples with
a score larger than 1.0. These perplexity scores
are calculated using the TextChemT5 model.

• Entity Recognition. We extract all the molecules
(either by name or SMILES) from the action se-
quences using the source codes of (Vaucher et al.,
2020). Then, we conduct string matching of IU-
PAC names between the extracted molecules and
those in the chemical reactions. STOUT (Rajan
et al., 2021) and PubChemPy¶ are used for the
translation between IUPAC names and SMILES.
If any molecule cannot be matched with its coun-
terpart in the chemical reactions, we consider
the reaction data invalid and remove it from the
dataset. However, we permit the inclusion of
certain common substances, such as common or-
ganic solvents, in every reaction. The names and
SMILES expressions of the 134 common sub-
stances are included in our code. After entity
recognition, we assign each entity a unique ID
and update the experimental procedures by re-
placing the entity mentions with the correspond-
ing entity IDs.

¶https://github.com/mcs07/PubChemPy

https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873?file=8664370
https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873?file=8664370
https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873?file=8664370
https://open-reaction-database.org
https://github.com/mcs07/PubChemPy


Field Value

Reactant $1$: OC(CCc1ccccn1)C(F)(F)F
$3$: CC(C)(C)[Si](C)(C)Cl
$4$: c1c[nH]cn1

Solvent $2$: ClCCl

Catalyst $5$: CN(C)c1ccncc1

Product $-1$: CC(C)(C)[Si](C)(C)OC(CCc1ccccn1)C(F)(F)F

Experimental MAKESOLUTION with $1$ and $2$ (10 mL) ;
Procedures ADD $3$ (616 mg, 4.1 mmol, 1.2 eq) at 0°C ;

ADD $4$ (697 mg, 10.2 mmol, 3.0 eq) at 0°C ;
ADD $5$ (415 ng, 3.4 mmol) at 0°C ;
STIR for 36 hours ;
CONCENTRATE ;
YIELD $-1$ (970 mg, 89%).

Source A solution of 700 mg (3.4 mmol) of 1,1,1-trifluoro-4-pyridin-2-ylbutan-2-ol in 10 mL
of dichloromethane was treated with 616 mg (4.1 mmol, 1.2 eq.) of
tert-butyldimethylsilyl chloride, 697 mg (10.2 mmol, 3.0 eq.) of imidazole and
415 ng (3.4 mmol) of 4-dimethylaminopyridine at 0° C. The resulting mixture was
allowed to warm to room temperature and as stirred for 36 hours. Then the mixture
w was concentrated and the residue was purified by flash chromatography to give
970 mg (89%) of 2-[3-(tert-butyldimethylsilanyloxy)-4,4,4-trifluorobutyl]pyridine
as a colorless oil.

Table 11: Illustrative example of the OpenExp dataset. BOLDED BLUE indicates pre-defined action.

• Common Substance Renaming. We standardized
the nomenclature for common substances that are
known by multiple names (e.g., water may also
be referred to as H2O, pure water, water (aq.),
etc.) to improve the dataset’s precision. Using
PubChemPy, we align the different names to their
standardized SMILES representations, allowing
us to identify when different terms refer to the
same molecule by comparing their SMILES ex-
pressions.

• Similar Action Aggregation. If two adjacent op-
erations are highly similar (e.g., STIR and STIR
for 5 min), they are merged together.

• Ensuring Single Product. This dataset focuses
on the preparation of a single material, hence we
remove reactions that yield multiple products.

• Action Filtering. We remove action sequences
that have fewer than five actions or contain in-
valid actions.

• Reaction Deduplication. We remove the dupli-
cated reactions from the dataset.

Table 12 presents the number of samples re-
moved at each preprocessing step. Further, Table
11 provides an example from the final OpenExp
dataset, we can observe that it encompasses:

Total reactions 2262637 100%

Too large perplexity score 329160 14.55%
More than one product 105577 4.67%
Incomplete mapping of molecules
(from chemical reaction)

1034908 45.74%

Incomplete mapping of molecules
(from action sequence)

178689 7.90%

Remove duplicate reactions 254099 11.23%
Filter out too short actions 14022 0.62%
Other errors 71743 3.16%

Remaining reactions 274439 12.13%

Table 12: Number of samples removed at each prepro-
cessing step.

• Structured, step-by-step instructions of experi-
mental procedures;

• All molecules in the reaction and their roles (i.e.,
reactant, solvent, catalyst, product).

• The mapping between the recognized entities
(i.e., molecules) and their IDs.

• The original unstructured experimental proce-
dures.

Discussion on License. The ORD database
is accessible under the CC-BY-SA license, and
the USPTO-Applications dataset is available un-
der the CC0 license. We have used codes from
TextChemT5 (Christofidellis et al., 2023) and Para-
graph2Actions (Vaucher et al., 2021), which are



both licensed under the MIT license. Therefore, we
will release OpenExp under the CC-BY-SA license
to comply with the most restrictive license of these
resources. This license permits content distribution
and sharing, provided the same license is applied.

Human Evaluation. We invite two PhD stu-
dents majoring in chemistry to evaluate the quality
of the OpenExp dataset. Specifically, 250 data
points are randomly sampled from the dataset, and
assigned to the evaluators according to the follow-
ing rules: 1) the first 50 data points are assigned to
both volunteers simultaneously to verify the con-
sistency of their evaluations; 2) the remaining 200
data points are then evenly assigned to the two eval-
uators. Under this allocation rule, each evaluator
is responsible for 150 data points. Tthe evalua-
tors are then asked to rate the quality of each data
point on a scale from 1 (lowest) to 5 (highest). Our
instructions to the evaluators are shown below:

Instructions to human evaluators.

We are curating a dataset partially generated by an
AI model and want to seek feedback on its quality
from human experts. During the evaluation process,
we will provide both machine language sequences
(the machine-generated operational sequences of ex-
perimental actions) and the corresponding natural
language sequences (descriptions of experimental
procedures in their original free texts).
You should rate these samples based on how well the
operational sequences align with the original descrip-
tions. Please use a rating scale of 1 (low alignment)
to 5 (high alignment). Molecular skeletal formulas
are provided as images for reference during evalua-
tion. All original data for this dataset come from the
United States Patent and Trademark Office (USPTO),
ensuring the viability of the reactions.

The following are the detailed scoring guidelines,
with a maximum score of 5:
• 5: The machine-generated action sequence in-

cludes no errors in capturing key details of the
original experimental procedure, including actions,
materials, and numerical values.

• 4: The machine-generated action sequence in-
cludes at most one (nerr ≤ 1) error or omission
related to actions, materials, or numerical values.

• 3: The machine-generated action sequence in-
cludes at most two (nerr ≤ 2) errors or omissions
related to actions, materials, or numerical values.

• 2: The machine-generated action sequence in-
cludes at most four (nerr ≤ 4) errors or omissions
related to actions, materials, or numerical values.

• 1: The machine-generated action sequence in-
cludes more than four (nerr > 4) errors or omis-
sions related to actions, materials, or numerical
values.

Figure 5 presents the human evaluation results.
Statistics of these 250 data points and the entire
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Figure 6: The score difference between evaluator 1 and
evaluator 2 on 50 samples.
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Figure 7: Action number distributions of the full Open-
Exp dataset and the human evaluation subset.

dataset can be found in Figure 7 and Table 13. We
can observe that the distribution of the sampled data
points closely resembles that of the entire dataset,
suggesting that the human evaluation results can
reflect the overall quality of the OpenExp dataset.

Based on the 50 shared data points, we calculate
the score differences in scores for the same sam-
ples (i.e., , the score given by evaluator 1 minus
the score given by evaluator 2). The results are
presented in Figure 6. We can observe the exact
alignment in ratings for 40% of the samples (20
out of 50), and a marginal score difference (±1) is
recorded for 54% of the samples (27 out of 50).
Discrepancies of two or more scores are exceed-
ingly rare, occurring in just 6% of the samples (3
out of 50). Some examples of human evaluated
data points are in Appendix C.3.2.

A.2 Collection and Preprocessing of
ReactXT’s Pretraining Dataset

In Section 3, we collect and compile a dataset to
incrementally pretrain an LM for improved un-
derstanding of chemical reactions and individual
molecules. Here we elaborate on the details of this
dataset, which includes the following contents:

• A total of 1,162,551 chemical reactions;

• Patent abstracts and computed/experimental
properties of 1,254,157 molecules, which are all



Property Name Full OpenExp Human eval.

Avg. Action Number 10.88 10.53
Avg. Reactant Number 2.96 2.98
Avg. Product Number 1.00 1.00
Avg. Catalyst Number 0.15 0.24
Avg. Solvent Number 1.06 1.00
Avg. Molecule Weight 164.88 168.80
Avg. Atom Number 10.57 10.69
Avg. Bond Number 10.63 10.75
Avg. Ring Number 1.06 1.07

Table 13: Chemical property statistics of the full Open-
Exp dataset and the human evaluation subset. Human
eval stands for the human evaluation subset.

from the chemical reactions.

We extract chemical reactions from ORD and
USPTO datasets. Then, we source patent ab-
stracts from PubChem’s Patent View|| and obtain
molecular properties using the PubChem’s Pub-
View API**. For each molecule, the abstract text de-
rives from the abstracts of patent documents where
the molecule is mentioned, and its properties in-
clude both computational and experimental ones.
Table 14 shows a complete list of these properties.

In Table 15, we compare the statistics of our pre-
training dataset with that of PubChem324k. We
can observe that ReactXT’s pretraining dataset in-
cludes more molecules and additionally includes
chemical reactions.

To prevent information leakage, we exclude a
total of 54,403 reactions that appear in the vali-
dation and test sets of the downstream datasets
(i.e., OpenExp and USPTO-50K (Schneider et al.,
2016)) from the pretraining dataset. The remaining
1,108,148 reactions are used for pretraining.

Discussion on License. The ORD database is
accessible under the CC-BY-SA license, and the
USPTO-Applications dataset is available under the
CC0 license. The patent abstracts from PubChem
are provided by Google Patent††, which is released
under the CC-BY-4.0 license. To comply with the
strictest license terms, we will release our dataset
under the CC-BY-SA license.

Additionally, we have utilized textual descrip-
tions, computed properties, and experimental prop-
erties from the PubChem website for pretraining.
Given that this data is aggregated from various
sources by PubChem, determining a single appro-
priate license is challenging. To support future

||pubchem.ncbi.nlm.nih.gov/docs/patents
**pubchem.ncbi.nlm.nih.gov/docs/pug-view
††patents.google.com

research while avoiding licensing complexities, we
will provide the scripts for downloading and pre-
processing this data, rather than distributing the
data directly.

B Experimental Details

B.1 Hyperparameters

Here we detail the hyperparameters for ReactXT’s
pretraining and finetuning across three downstream
tasks. Due to the prohibitive costs associated
with training large LMs, finetuning on downstream
datasets is limited to a single run.

ReactXT Pretrain. The pretraining stage of
ReactXT has 5 million steps, with the number of
molecules per reaction being k = 4. Following
MolCA’s (Liu et al., 2023b) experimental setup,
we employ a Q-former with 8 query tokens. We
use AdamW as the optimizer, with a weight decay
set to 0.05. The optimizer’s peak learning rate is
set to 1× 10−4, scheduled by linear warmup with
cosine decay. The warmup has 1000 steps and
starts at a learning rate of 1× 10−6.

Experimental Procedure Prediction. We fully
finetune all the baseline methods and ReactXT for
20 epochs, with a batch size of 32. The optimizer
and learning rate settings are consistent with the
pretraining phase.

Retrosynthesis. Following (Zhong et al., 2022),
we sample 20 root-aligned augmentations for the
training and testing subsets. Before finetuning on
USPTO-50K, We first conduct 2 epochs of masked
self-supervised pretraining for MolT5 and Reac-
tXT on the USPTO-full dataset (Dai et al., 2019),
following the pretraining strategy of R-SMILES
(Zhong et al., 2022). During finetuning, we train
MolT5 for 20 epochs and ReactXT for 5 epochs
on the augmented training set using a batch size of
32. We then average the model’s parameters on the
last several tuning steps as the final checkpoint for
testing. During testing, we conduct a beam search
with a beam size of 20 for both models and return
the top ten results as the model’s predictions. The
beam size (20) and the number of results (10) are
following the experiment of R-SMILES (Zhong
et al., 2022). The optimizer and learning rate set-
tings are kept consistent with the pretraining phase.

Molecule Captioning. On both datasets, we full
finetune MolCA and ReactXT 20 epochs, with a
batch size of 32. The optimizer and learning rate
settings are consistent with the pretraining phase.

pubchem.ncbi.nlm.nih.gov/docs/patents
pubchem.ncbi.nlm.nih.gov/docs/pug-view
patents.google.com


Computed Properties Experimental Properties

Property Count Property Count Property Count Property Count

Molecular Weight 1244109 Physical Descrip-
tion

8368 Vapor Density 1043 Enthalpy of
Sublimation

9

Hydrogen Bond
Donor Count

1244109 Kovats Retention
Index

6878 Autoignition
Temperature

771 Acid Value 4

Hydrogen Bond Ac-
ceptor Count

1244109 Solubility 5909 Heat of Vapor-
ization

583 Dielectric
Constant

2

Rotatable Bond
Count

1244109 Chemical Classes 5726 Viscosity 550 Dispersion 1

Exact Mass 1244109 Melting Point 4468 Taste 514 Hydrophobicity 1
Monoisotopic Mass 1244109 Vapor Pressure 3032 Henry’s Law

Constant
502

Topological Polar
Surface Area

1244109 Boiling Point 2996 Surface Tension 448

Heavy Atom Count 1244109 Color/Form 2927 pH 444
Formal Charge 1244109 Density 2862 Odor Threshold 442
Complexity 1244109 LogP 2763 Corrosivity 410
Isotope Atom Count 1244109 Other Experimen-

tal Properties
2393 Heat of Com-

bustion
405

Defined Atom Stere-
ocenter Count

1244109 Decomposition 2033 Ionization Effi-
ciency

332

Undefined Atom
Stereocenter Count

1244109 Refractive Index 1777 Optical Rota-
tion

265

Defined Bond Stere-
ocenter Count

1244109 Collision Cross
Section

1634 Ionization
Potential

253

Undefined Bond
Stereocenter Count

1244109 Odor 1512 LogS 166

Covalently-Bonded
Unit Count

1244109 Stability/Shelf
Life

1506 Polymerization 134

Compound Is
Canonicalized

1244109 Flash Point 1479 Relative Evapo-
ration Rate

101

XLogP3 1184175 Dissociation Con-
stants

1250 Caco2 Perme-
ability

79

Table 14: Statistics of the collected molecule properties, including computed properties and experimental properties.

Our Dataset Pubchem324k

Num of Molecules 1, 254, 157 313, 083
Num of Reactions 1, 162, 551 -
Avg. Molecule Weight 362.4 502.4
Avg. Atom Count 24.9 35.2
Avg. Bond Count 26.8 37.6
Avg. Ring Count 2.9 3.5
Avg. Text Length 517.8 120.4
Avg. Property Count 17.8 -

Table 15: Statistics of ReactXT’s pretraining dataset
and Pubchem324k.

B.2 Other Implementation Details

Baselines. We briefly introduce the baselines:

• Galactica (Taylor et al., 2022). Galactica is a
scientific language model which is pretrained on
2 million compounds from PubChem. It has a
decent understanding of SMILES formulas.

• MolT5 (Edwards et al., 2022). MolT5 is devel-
oped based on the T5 model. Its training corpora
include both natural language and SMILES data,
making it suitable for both molecule captioning
and text-based molecular generation tasks.

• TextChemT5 (Christofidellis et al., 2023).
TextChemT5 is a T5-based multi-domain LM,
which is tuned on various text-molecule tasks.

• MolCA (Liu et al., 2023b). MolCA is a multi-
modal language model finetuned on Galactica. It
includes both graph encoder and LM, where a
Querying Transformer is applied to align their
latent spaces.

• AT (Tetko et al., 2020). AT trains transformers
with data augmentation for retrosynthesis. The
data augmentation is achieved by rearranging the
order of characters in SMILES strings in both the
training and test sets.

• MEGAN (Sacha et al., 2021). MEGAN repre-
sents chemical reactions as a sequence of graph
edits and performs retrosynthesis by sequentially
modifying the target molecule.

• MoMu (Su et al., 2022). Momu contrastively pre-
trains a GNN and an LM with paired molecular
graph-text data, and can be adapted to retrieval
and generation tasks.



Pretrain Input Context Pretrain Data Type BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

No incremental pretrain - 39.4 32.2 52.7 39.4 47.6 49.2
Reactions reaction 37.3 29.9 50.3 36.5 45.0 46.7
ReactXT reaction, sing. mol. 42.6 35.2 54.7 41.7 49.6 51.2

Table 16: Ablation study. Performances (%) for molecule captioning on the PubChem324k dataset.

BLEU2 BLEU4 ROUGE1 ROUGE2 ROUGEL

T-statistic 14.619 13.622 16.126 14.438 15.053
P-value <0.001 <0.001 <0.001 <0.001 <0.001

Table 17: P-values for experimental procedure predic-
tion (Table 5), comparing ReactXT against MolCA-
1.3B.

BLEU2 BLEU4 ROUGE1 ROUGE2 ROUGEL METEOR

T-statistic 3.469 3.823 3.451 3.851 3.434 4.107
P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 18: P-values for captioning on PubChem324k
(Table 6), comparing ReactXT against MolCA-1.3B,
full ft.

• Chemformer (Irwin et al., 2022). Chemformer
is a Transformer-based molecule LM that is self-
supervised pretrained on a SMILES corpus. It
can be applied to both generation and property
prediction tasks.

• Random, among all reactions (Vaucher et al.,
2021). Randomly pick an action sequence from
the training set.

• Random, compatible pattern (Vaucher et al.,
2021). Randomly pick an action sequence from
the training subset of reactions that have the same
number of molecules as the current reaction.

• Nearest Neighbor (Vaucher et al., 2021). Pick
the action sequence from the training set with
the reaction most similar to the current one, as
determined by reaction fingerprints (Schwaller
et al., 2019).

C More Experimental Results

C.1 Ablation Study
Table 16 presents an ablation study examining the
impact of input contexts on molecule captioning.
The removal of the random molecule context re-
sults in diminished captioning performance. This
observation can be attributed to two factors: 1) in-
cluding the PubChem324k dataset, which is used
for creating random molecule contexts, is impor-
tant to maintain molecule captioning performance;

BLEU2 BLEU4 ROUGE1 ROUGE2 ROUGEL METEOR

T-statistic 2.918 3.523 2.843 3.495 3.129 2.195
P-value 0.004 <0.001 0.004 <0.001 0.002 0.028

Table 19: P-values for captioning on CheBI-20 (Table 6),
comparing ReactXT against MolCA-1.3B, full ft.

Top1 Top3 Top5 Top10

Z-statistic 2.340 2.380 0.440 0.000
P-value 0.019 0.017 0.662 1.000

Table 20: P-values for retrosynthesis (Table 7), compar-
ing ReactXT against R-SMILES. Both models use 20
augmentations during testing.

and 2) without random molecule contexts, the LM
becomes overly dependent on reaction contexts,
compromising its capability to accurately caption
individual molecules. This finding underscores the
significance of incorporating random molecule con-
texts in training.

C.2 Statistical Analysis

We carry out statistical tests on the experimental
results to demonstrate that ReactXT achieves a sig-
nificant performance improvement compared to
the baseline models. For most metrics (such as
BLEU, ROUGE, METEOR), we employ the T-test;
for Top-k accuracy, where calculating the standard
deviation was challenging, we use a 2-proportion
Z-test instead.

The results of the statistical tests are presented in
Tables 17 to 20. We bold p-values that are smaller
than 0.05. From these tables, it can be observed
that our method achieves statistically significant
improvements across all metrics within the tasks
of experimental procedure prediction (Table 17)
and molecule captioning (Tables 18 and 19). As
for the retrosynthesis task (Table 20), our method
demonstrates statistically significant enhancements
in both Top1 and Top3 accuracies. These observa-
tions collectively demonstrate the effectiveness of
our proposed pretraining method.



Field Value

Reactant $1$: OCCCCCCCc1ccccc1
$2$: C#CC(=O)O
$4$: c1ccccc1

Catalyst $3$: Cc1ccc(S(=O)(=O)O)cc1

Product $-1$: C#CC(=O)OCCCCCCCc1ccccc1

Source A mixture of 0.5 g of 7-phenylheptanol, 0.27 g of propiolic acid, 0.005 g of p-toluenesulfonic acid
and 25 ml of benzene was refluxed with stirring for six hours while water formed was removed by
a Dean-Stark water separator. After the reaction was completed, the reaction solution was washed
successively with a 5% aqueous sodium bicarbonate solution and a saturated sodium chloride solution,
and dried over anhydrous magnesium sulfate. After removal of the solvent under reduced pressure, the
obtained residue was subjected to silicagel column chromatography to yield 0.368 g of 7-phenylheptyl
propiolate (compound 3).

Annotated
Actions

MAKESOLUTION with $1$ (1.1 g) and
$2$ (0.005 g) and $3$ (25 ml) and $4$ ;
REFLUX for 6 hours ;
CONCENTRATE ;
WASH with NaHCO3 ;
WASH with sodium chloride ;
DRYSOLUTION over magnesium sulfate ;
FILTER keep filtrate ;
YIELD $-1$ (1.15 g).

Predicted
Actions

MAKESOLUTION with $1$ (0.27 g) and
$2$ (0.005 g) and $3$ (25 ml) and $4$ ;
REFLUX for 10 hours;
CONCENTRATE ;
WASH with NaHCO3 ;
WASH with sodium chloride ;
DRYSOLUTION over magnesium sulfate ;
FILTER keep filtrate ;
YIELD $-1$ (0.368 g).

(a) Example 1.

Field Value

Reactant $1$: C[Si]1(C)CC[Si](C)(C)N1c1ccc(C(O)c2cn(S(=O)(=O)c3ccccc3)c3ncc(Cl)cc23)cn
$2$: Nc1ccc(C(O)c2cn(S(=O)(=O)c3ccccc3)c3ncc(Cl)cc23)cn1
$4$: CC[SiH](CC)CC
$5$: O=C(O)C(F)(F)F

Solvent $3$: ClCCl

Product $-1$: Nc1ccc(Cc2cn(S(=O)(=O)c3ccccc3)c3ncc(Cl)cc23)cn1

Source To (1-benzenesulfonyl-5-chloro-1H-pyrrolo[2,3-b]pyridin-3-yl)-[6-(2,2,5,5-tetramethyl-[1,2,5]azadisi-
lolidin-1-yl)-pyridin-3-yl]-methanol and (6-amino-pyridin-3-yl)-(1-benzenesulfonyl-5-chloro-1H-
pyrrolo[2,3-b]pyridin-3-yl)-methanol (118, 119, 1.70/1.25 g mix, 2.41 mmol) in 25.0 mL of
dichloromethane, triethylsilane (3.00 mL, 18.8 mmol) and trifluoroacetic acid (1.50 mL, 19.5 mmol)
were added and the reaction stirred at room temperature overnight. The reaction was concentrated under
vacuum, combined with aqueous potassium carbonate and extracted with ethyl acetate. The organic
layer was dried over sodium sulfate, filtered and the filtrate concentrated under vacuum. The resulting
material was purified by silica gel column chromatography eluting with 20-100% ethyl acetate in hexane
to provide the desired compound (120, 0.70 g).

Annotated
Actions

MAKESOLUTION with $1$ and $2$ and
$3$ (25.0 mL) ;
ADD $4$ (3.00 mL, 18.8 mmol) ;
ADD $5$ (1.50 mL, 19.5 mmol) ;
STIR for overnight at room temperature ;
CONCENTRATE ;
ADD K2CO3 ;
EXTRACT with ethyl acetate ;
COLLECTLAYER organic ;
DRYSOLUTION over sodium sulfate ;
FILTER keep filtrate ;
CONCENTRATE ;
YIELD $-1$ (0.70 g).

Predicted
Actions

MAKESOLUTION with $1$ (1.00 g, 1.91
mmol) and $2$ (0.69 g, 1.72 mmol) and $3$
(35 mL) ;
ADD $4$ (1.35 mL, 7.84 mmol) ;
ADD $5$ (1.90 mL, 26.7 mmol) ;
STIR for 8 h at room temperature ;
CONCENTRATE ;
EXTRACT with K2CO3 ;
EXTRACT with ethyl acetate ;
COLLECTLAYER organic ;
DRYSOLUTION over sodium sulfate ;
FILTER keep filtrate ;
CONCENTRATE ;
YIELD $-1$ (0.13 g, 19%).

(b) Example 2.

Table 21: Examples of accurate experimental procedure predictions.



C.3 Case Studies and Error Analysis

C.3.1 Experimental Procedure Prediction

In this section, we present case studies from the
experimental procedure prediction task to inform
future research. We include examples of accurate
predictions (see Table 21), inaccurate predictions
(see Tables 22), and predictions that are different
from the annotations but may also work (see Ta-
ble 23 and Table 24). Our selection criteria pri-
oritizes the accuracy of action sequences and the
correct identification of primary materials, while
overlooking specifics like material quantities and
temperatures. All the examples are from the test
set of OpenExp.

Table 21 displays two examples where experi-
mental procedures are accurately predicted, show-
ing close alignment between predicted and anno-
tated actions, albeit with slight variances in mate-
rial quantities and experiment times. These cases
highlight the capability of LMs to predict exper-
imental procedures, suggesting a path toward au-
tomating chemical synthesis.

Table 22 displays two failed examples of experi-
mental procedure prediction. The predicted action
sequences significantly deviate from the annotated
sequences, making them impractical. Additionally,
we can observe one common error of repetition,
with the same or similar actions being duplicated.

Tables 23 and Table 24 showcase three exam-
ples where the predictions, while different from
the annotations, could still be viable. In Example
5, as an alternative to the annotated ’EXTRACT
with ethyl acetate’, the model proposes a series of
actions (‘COLLECT LAYER’, ‘WASH with ethyl
acetate’, ‘DRY SOLUTION’, and ‘FILTER’), serv-
ing a similar function. In Example 6, instead of
the specified ’SET TEMPERATURE’ and ’STIR’,
the model recommends ‘STIR for 1h at 0 °C’, serv-
ing the same purpose. In Example 7, the model
suggests adding components (‘ADD $4$’, ‘ADD
$5$’, ‘ADD $6$’) sequentially rather than making
a single solution as annotated, which could also be
effective.

C.3.2 Human Evaluation of OpenExp

In this section, we present case studies from human
evaluations on the OpenExp dataset. Samples rated
from 5 to 1 by human evaluators are included, as
shown in Tables 25 to Tables 29. All samples are
from the 250 human evaluated data points (see
Appendix A.1). It can be observed that samples

with two or fewer errors may only have minor flaws,
such as typol errors or incorrect numerical values.



Field Value

Reactant $1$: Nc1ccc(C(=O)N[C@H](CO)Cc2ccccc2)c(/C=C/c2ccccc2)c1
$3$: CC(=O)OC(C)=O

Solvent $2$: C1CCOC1

Product $-1$: CC(=O)Nc1ccc(C(=O)N[C@H](CO)Cc2ccccc2)c(/C=C/c2ccccc2)c1

Source 1 g (2.7 mmol) of (S)-4-amino-2(E-2-phenylethen-1-yl)-N-(3-phenylpropan-1-ol-2-yl)benzamide
(intermediate 43f) was suspended in 50 ml of tetrahydrofuran and mixed with 0.25 ml (2.7
mmol) of acetic anhydride at 100° C. The mixture was stirred for 16 h. The reaction was then
concentrated under reduced pressure and the residue was recrystallized from ethanol. 0.78 g
(71%) of the product was obtained.

Annotated
Actions

ADD $1$ (1 g, 2.7 mmol) ;
ADD $2$ (50 ml) ;
ADD $3$ (0.25 ml, 2.7 mmol) ;
STIR for 16 h at 100 °C ;
CONCENTRATE ;
RECRYSTALLIZE from ethanol
(0.78 g) ;
YIELD $-1$.

Predicted
Actions

MAKESOLUTION with $1$ and $2$ (15 ml) ;
ADD $3$ (0.27 ml, 2.9 mmol) ;
STIR for 10 h at 100 °C ;
WAIT for 10 h at 100 °C ;
STIR for 10 h at 100 °C ;
CONCENTRATE ;
ADD ethyl acetate ;
ADD water ;
PHASESEPARATION ;
COLLECTLAYER aqueous ;
EXTRACT with ethyl acetate ;
COLLECTLAYER organic ;
WASH with brine ;
DRYSOLUTION over magnesium sulfate ;
FILTER keep filtrate ;
CONCENTRATE ;
YIELD $-1$ (144 mg, 75%).

(a) Example 3.

Field Value

Reactant $1$: Brc1ccc2noc(-c3ccccc3)c2c1
$2$: O

CATALYST $3$: [Zn]

SOLVENT $4$: CC(=O)O

PRODUCT $-1$: Nc1ccc(Br)cc1C(=O)c1ccccc1

Source 5-Bromo-3-phenyl-2,1-benzisoxazole (7.5 g, 28.6 m mol), water (14.6 ml), and zinc dust (9.3 g, 143
m mol) were combined. Acetic acid (8.6 ml, 143 m mol) was added and the mixture was stirred and
heated at 80° C. for 90 minutes. After cooling to room temperature, both the liquid and solid portion
of the reaction were extracted with methylene chloride. The combined methylene chloride solutions
was washed once with sodium hydroxide solution (10%) and several times with water. Drying (sodium
sulfate) and evaporation yielded the desired product (7.42 g) of mp. 92°-102° C.

Annotated
Actions

ADD $1$ (7.5 g) ;
ADD $2$ (14.6 ml) ;
ADD $3$ (9.3 g) ;
ADD $4$ (8.6 ml) ;
STIR for 90 minutes at 80 °C ;
EXTRACT with methylene chloride ;
EXTRACT with CH2 Cl2 ;
WASH with NaOH ;
WASH with $2$ ;
DRYSOLUTION over sodium sulfate ;
FILTER keep filtrate ;
YIELD $-1$ (7.42 g).

Predicted
Actions

MAKESOLUTION with $1$ and $2$ (150 ml) ;
ADD $3$ (24 g) ;
ADD $4$ (60 ml) ;
STIR for 120 minutes at 80 °C ;
WAIT for 120 minutes at 80 °C ;
FILTER ;
ADD carbon ;
COLLECTLAYER organic ;
WASH with $2$ (200 ml) 3 x ;
DRYSOLUTION over sodium sulfate ;
FILTER keep filtrate ;
CONCENTRATE ;
RECRYSTALLIZE from 2-amino-5-bromo-
benzophenone (20.7 g) ;
YIELD $-1$ (20.7 g, 57.9%).

(b) Example 4.

Table 22: Examples of inaccurate experimental procedure predictions. Green denotes error of repetition.



Field Value

Reactant $1$: COc1ccc(-c2cccc(CC(=O)O)c2)cc1C(C)=NO
$3$: FC(F)(F)c1ccc(CBr)cc1
$4$: [H-].[Na+]
$5$: Cl

SOLVENT $2$: C1CCOC1

PRODUCT $-1$: COc1ccc(-c2cccc(CC(=O)O)c2)cc1C(C)=NOCc1ccc(C(F)(F)F)cc1

Source 9 mg of [3’-(1-Hydroxyiminoethyl)-4’-methoxybiphenyl-3-yl]acetic acid was dissolved in 0.2 mg of
tetrahydrofuran, then 25 mg of 4-trifluoromethylbenzyl bromide and 10 mg of sodium hydride were
added thereto, and the mixture was stirred at room temperature for 3 days. The reaction mixture was
neutralized with 1N hydrochloric acid and then extracted with ethyl acetate. The organic layer was
concentrated, and the residue was purified by reverse-phase high performance liquid chromatography to
give 5.21 mg of the title compound.

Annotation
Actions

ADD $1$ (9 mg) ;
ADD $2$ (0.2 mg) ;
ADD $3$ (25 mg) ;
ADD $4$ (10 mg) ;
STIR for 3 days at room temperature ;
PH with $5$ (1 normal) to pH neutral
at room temperature ;
EXTRACT with ethyl acetate ;
CONCENTRATE ;
YIELD $-1$ (5.21 mg).

Predicted
Actions

MAKESOLUTION with $1$ (25 mL) and $2$ ;
ADD $3$ (292 mg) ;
ADD $4$ (104 mg) ;
STIR for overnight at room temperature ;
PH with $5$ (1 normal) to pH neutral at room tem-
perature ;
COLLECTLAYER organic ;
WASH with ethyl acetate ;
COLLECTLAYER organic ;
WASH with water ;
WASH with brine ;
DRYSOLUTION over magnesium sulfate ;
FILTER keep filtrate ;
CONCENTRATE ;
YIELD $-1$ (204 mg).

(a) Example 5.

Field Value

REACTANT $3$: Cc1ccc2c(N)ccc(O)c2n1
$4$: O=N[O-].[Na+]
$5$: [N-]=[N+]=[N-].[Na+]

Solvent $1$: Cl
$2$: O

PRODUCT $-1$: Cc1ccc2c(N=[N+]=[N-])ccc(O)c2n1

Source 5-Amino-8-hydroxy-2-methylquinoline (12; 723 mg, 4.2 mmol) was dissolved in a solution of concen-
trated hydrochloric acid (0.4 mL) and water (5 mL), cooled to -3° C. in a salt-ice bath, stirred for 10 min,
then treated dropwise with a cold solution of sodium nitrite (0.50 g, 7.2 mmol) in water (5 mL). The
mixture was stirred for 20 min, then treated dropwise with sodium azide (0.60 g, 9.2 mmol) in water
(40 mL), stirred at 0° C. for a further 1.5 h, then allowed to warm to room temperature over 24 h in the
dark. Isolation by extraction with diethyl ether gave a dark brown solid, which was recrystallized from
light petroleum to yield 13 as light brown crystals (554 mg, 66%). 1H NMR (500 MHz, CD3OD) δ ppm:
3.31 (s, 3H), 7.06 (d, J=8.5 Hz, 1H), 7.15 (d, J=8.5 Hz, 1H), 7.36 (d, J=8.5 Hz, 1H), 8.21 (d, J=8.5 Hz,
1H). 13C NMR (125 MHz, CD3OD) δ ppm: 24.9, 111.8, 115.6, 121.6, 123.7, 127.9, 132.6, 139.6, 151.1,
159.7. HRMS (ESI): calcd for C10H8N4O [M+H]+: 201.0771, found: 201.0773.

Annotation
Actions

MAKESOLUTION with $1$ (0.4 mL)
and $2$ (5 mL) ;
ADD $3$ (723 mg, 4.2 mmol) ;
SETTEMPERATURE -3 °C ;
STIR for 10 min ;
MAKESOLUTION with $4$ (0.50 g,
7.2 mmol) and $2$ (5 mL) ;
STIR for 20 min ;
MAKESOLUTION with $5$ (0.60 g,
9.2 mmol) and $2$ (40 mL) ;
STIR for 1.5 h at 0 °C ;
RECRYSTALLIZE from petroleum ;
YIELD $-1$ (554 mg, 66%).

Predicted
Actions

MAKESOLUTION with $1$ (3 ml) and $2$ (1
ml) ;
ADD $3$ (210 mg, 1.24 mmol) ;
STIR for 1 h at 0 °C;
MAKESOLUTION with $4$ (80 mg, 1.24
mmol) and $2$ (1 ml) ;
STIR for 1 h at 0 °C;
MAKESOLUTION with $5$ (88 mg, 1.24
mmol) and $2$ (1 ml) ;
STIR for 2 h at 0 °C ;
RECRYSTALLIZE ;
YIELD $-1$ (120 mg, 47%).

(b) Example 6.

Table 23: Examples of experimental procedure predictions that are different from the annotation but might be viable.



Field Value

Reactant $1$: CNC(=O)c1cn(CCCCc2ccc(N)nn2)nn1
$2$: O=C(O)Cc1cc(Br)ccn1
$4$: CCCP1(=O)OP(=O)(CCC)OP(=O)(CCC)O1
$6$: CCN(C(C)C)C(C)C

Solvent $3$: CN(C)C=O
$5$: CCOC(C)=O
$7$: O

Product $-1$: CNC(=O)c1cn(CCCCc2ccc(NC(=O)Cc3cc(Br)ccn3)nn2)nn1

Source To a solution of 1-(4-(6-aminopyridazin-3-yl)butyl)-N-methyl-1H-1,2,3-triazole-4-carboxamide (2.0 g,
7.2 mmol) and 2-(4-bromopyridin-2-yl)acetic acid (1.6 g, 7.2 mmol) in DMF (5 ml) were added T3P
(50 wt. % in EtOAc, 9.2 g, 14 mmol) and DIEA (2.7 g, 22 mmol). The mixture was stirred at RT for 3
h, then water (50 mL) was added, the mixture was stirred for 30 min, and precipitate was isolated by
filtration to give the title compound as a yellow solid (1 g, 40%). MS (ES+) C19H21BrN8O2 requires:
473. found: 474 [M+H]+.

Annotated
Actions

MAKESOLUTION with $1$ (2.0 g, 7.2
mmol) and $2$ (1.6 g, 7.2 mmol) and $3$
(5 ml) ;
MAKESOLUTION with $4$ and $5$ (9.2
g, 14 mmol) and $6$ (2.7 g, 22 mmol) ;
STIR for 3 h at RT ;
ADD $7$ (50 mL) ;
STIR for 30 min ;
YIELD $-1$ (1 g, 40%).

Predicted
Actions

MAKESOLUTION with $1$ (30 mg, 0.109
mmol) and $2$ (23 mg, 0.109 mmol) and $3$
(0.5 ml) ;
ADD $4$ (67 l, 0.109 mmol, 0.109 mmol) ;
STIR for 3 h at room temperature ;
ADD $5$ (5 ml) ;
ADD $6$ (67 l, 0.38 mmol, 0.38 mmol) ;
STIR for 30 min at room temperature ;
ADD $7$ (0.5 ml) ;
CONCENTRATE ;
YIELD $-1$ (36 mg, 70% yield).

Table 24: Examples of experimental procedure predictions that are different from the annotation but might be viable.
Example 7.

Field Value

Source To a solution of 2-(5-amino-3-methyl-1H-pyrazol-4-yl)-benzothiazole-5-carboxylic acid ethyl ester (30
mg) in THF (1 mL) was added lithium aluminum hydride (4 mg). The reaction mixture was stirred
at room temperature for 5 hrs at which point sodium sulfate nonahydrate was added. The resulting
mixture was stirred for an additional 30 min. The solids were removed by filtration. The solvent was then
evaporated and the residue was purified by flash column chromatography eluting with CHCl3:MeOH=9:1
to yield 21 mg (81%) of the title compound as a cream coloured solid. MS (m/z, ES+): 261.1 (M+1,
100%).

Annotated
Actions

MAKESOLUTION with 2-(5-amino-3-methyl-1H-pyrazol-4-yl)-benzothiazole-5-carboxylic acid ethyl
ester (30 ; mg) and THF (1 mL) ;
ADD lithium aluminum hydride (4 mg) ;
STIR for 5 hr at room temperature ;
ADD sodium sulfate nonahydrate ;
STIR for 30 min at room temperature ;
FILTER keep filtrate ;
CONCENTRATE ;
YIELD PRODUCT (21 mg, 81%) .

Table 25: Example with a Human Evaluation Score of 5. The action sequence accurately captures the source
paragraph.



Field Value

Source A mixture of (5-nitro-pyridin-2-yl)-(2,2,2-trifluoro-ethyl)-amine (230 mg, 1.04 mmol), cesium carbonate
(730 mg, 2.07 mmol) and iodomethane (0.59 mL, 4.18 mmol) in DMF (4 mL) was heated in a sealed
tube at 50° C. for 3 hr. The reaction mixture was evaporated to dryness and the crude was partitioned
between methylene chloride and water. The organic layer was dried over magnesium sulfate, filtered and
concentrated to give methyl-(5-nitro-pyridin-2-yl)-(2,2,2-trifluoro-ethyl)-amine (270 mg, crude) as a
brown solid, which was directly used in the next step reaction without further purification. LCMS calcd
for C8H8F3N3O2 (m/e) 235, obsd 236 (M+H).

Annotated
Actions

MAKESOLUTION with (5-nitro-pyridin-2-yl)-(2,2,2-trifluoro-ethyl)-amine (230 mg, 1.04 mmol) and
cesium carbonate (730 mg, 2.07 mmol) and iodomethane (0.59 mL, 4.18 mmol) and DMF (4 mL) ;
STIR for 3 hr at 50 °C ;
CONCENTRATE ;
PARTITION with methylene chloride and water ;
COLLECTLAYER organic ;
DRYSOLUTION over magnesium sulfate ;
FILTER keep filtrate ;
CONCENTRATE ;
YIELD PRODUCT (270 mg) .

Table 26: Example with a Human Evaluation Score of 4. The action sequence contains 1 error, which is highlighted
in green.

Field Value

Source To a stirred solution of 1,5-anhydro-2,3-dideoxy-D-erythro-hexitol (44.9 g) and imidazole (65.2 g) in
DMF (500 ml) was added tert-butylchlorodiphenylsilane (88.5 mL) at 0° C. After stirring for 4 h, the
reaction mixture was diluted with EtOAc (1000 ml). The organic layer was washed with water (200
mL×5) and brine (200 mL), and dried over Na2SO4. The solution was concentrated under reduced
pressure, and the residue was purified by column chromatography (PE/EtOAc) to afford 70.9 g of the
title compound as a colorless oil.

Annotated
Actions

MAKESOLUTION with 1,5-anhydro-2,3-dideoxy-D-erythro-hexitol (44.9 g) and imidazole (65.2 g)
and DMF (500 ml) ;
ADD tert-butylchlorodiphenylsilane (88.5 mL) at 0 °C ;
ADD tert-butylchlorodiphenylsilane (88.5 mL) ;
STIR for 4 h at 0 °C ;
ADD ethyl acetate (1000 ml) ;
COLLECTLAYER organic ;
WASH with water (200 mL) ;
WASH with brine (200 mL) ;
DRYSOLUTION over Na2SO4 ;
FILTER keep filtrate ;
CONCENTRATE ;
YIELD PRODUCT (70.9 g) .

Table 27: Example with a Human Evaluation Score of 3. The action sequence contains 2 errors, which are
highlighted in green.



Field Value

Source A mixture of methyl 3-hydroxy-1-methyl-1H-pyrazole-5-carboxylate (2.34 g, 15.0 mmol), iodomethane
(3.19 g, 22.5 mmol), potassium carbonate (4.15 g, 30.0 mmol) and N,N-dimethylformamide (15 ml)
was stirred at room temperature for 18 hr. The mixture was diluted with water (50 mL), and extracted
with ethyl acetate (50 mL×3). The organic layer was washed with water (10 mL×2), and concentrated
under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl
acetate=100/0→50/50) to give the title compound (2.01 g, yield 79%) as a white solid. 1H-NMR
(DMSO-d6, 300 MHz) 3.78 (3H, s), 3.81 (3H, s), 3.94 (3H, s), 6.27 (1H, s).

Annotated
Actions

MAKESOLUTION with methyl 3-hydroxy-1-methyl-1H-pyrazole-5-carboxylate (2.34 g, 15.0 mmol)
and iodomethane (3.19 g, 22.5 mmol) and potassium carbonate (4.15 g, 30.0 mmol) and N,N-
dimethylformamide (15 ml) ;
STIR for 18 hr at room temperature ;
ADD water (50 mL) at room temperature over 18 hr ;
COLLECTLAYER organic ;
WASH with ethyl acetate (50 mL) ;
COLLECTLAYER organic ;
WASH with water (10 mL) ;
CONCENTRATE ;
YIELD PRODUCT (2.01 g, yield 79%) .

Table 28: Example with a Human Evaluation Score of 2. The action sequence contains 4 errors, which are
highlighted in green.

Field Value

Source 4-[4-(4-Fluoro-phenyl)-thiazol-2-yl]-2’-nitro-biphenyl-2-carboxylic acid Sodium hydroxide (40 mg, 1
mmol) was added to a suspension of 4-[4-(4-fluoro-phenyl)-thiazol-2-yl]-2’-nitro-biphenyl-2-carboxylic
acid methyl ester (40 mg) in a mixture of water (1 mL) and dioxane (1 mL). The resulting mixture was
heated at 50° C. for 4 h. The solvent was evaporated and water (5 mL) was added. The mixture was
filtered and the filtrate was made acidic to pH 3 by the addition of concentrated HCl. The precipitate
was collected by filtration and dried to give 4-[4-(4-fluoro-phenyl)-thiazol-2-yl]-2’-nitro-biphenyl-2-
carboxylic acid (45 mg, 58% for two steps). 1H NMR (300 MHz, DMSO-d6) 13.21 (br s, 1H), 8.65 (s,
1H), 8.17-8.33 (m, 5H), 7.86 (t, J=7.6 Hz, 1H), 7.73 (t, J=7.8 Hz, 1H), 7.52 (t, J=8.5 Hz, 2H), 7.40 (t,
J=8.6 Hz, 2H).

Annotated
Actions

MAKESOLUTION with 4-[4-(4-fluoro-phenyl)-thiazol-2-yl]-2’-nitro-biphenyl-2-carboxylic acid
methyl ester (40 mg) and 4-[4-(4-fluoro-phenyl)-thiazol-2-yl]-2’-nitro-biphenyl-2-carboxylic acid methyl
ester (40 mg) and water (1 mL) and dioxane (1 mL) ;
ADD 4-[4-(4-Fluoro-phenyl)-thiazol-2-yl]-2’-nitro-biphenyl-2-carboxylic acid Sodium hydroxide (40
mg, 1 mmol) ;
MAKESOLUTION with water (1 mL) and dioxane (1 mL) ;
STIR for 4 h at 50 °C ;
CONCENTRATE ;
ADD water (5 mL) ;
FILTER keep precipitate ;
{missing operation} ;
DRYSOLUTION over 4-[4-(4-fluoro-phenyl)-thiazol-2-yl]-2’-nitro-biphenyl-2-carboxylic acid (45 mg)
;
FILTER keep filtrate ;
YIELD PRODUCT (45 mg, 58%) .

Table 29: Example with a Human Evaluation Score of 1. The action sequence contains 5 errors, which are
highlighted in green.
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